亲爱的广场用户们,广场使用界面全新升级啦!新版本界面更清新简洁、操作更流畅丝滑,还有多项贴心新功能上线,快来更新体验吧!你对新版界面有什么感受?你最喜欢的新功能是哪一个?你发现了哪些惊喜或变化呢?发帖分享新版广场使用体验,瓜分 $10 分享奖励!
🎁 我们将精选 10 位幸运用户,每人奖励 $10 合约体验券!
参与方式:
1⃣️ 关注 Gate广场_Official;
2⃣️ 带上 #我的广场升级体验 标签发帖,分享你的使用感受,比如界面风格体验、细节功能变化、你最喜欢的新功能,或优化建议等;
3⃣️ 帖子内容需至少 30 字,并且只带本活动标签;
广场界面焕新介绍文章:https://gate.com/post?post_id=14774358&tim=ARAbClhcBQNwWRIVGAoGBB5QX1sO0O0O&ref=BFlBUFwL&ref_type=105
活动截止时间:2025/10/26 18:00(UTC+8)
你的体验是我们持续优化的动力!赶快参与和大家分享吧!
阿里大模型又开源!能读图会识物,基于通义千问7B打造,可商用
来源:量子位
继通义千问-7B(Qwen-7B)之后,阿里云又推出了大规模视觉语言模型Qwen-VL,并且一上线就直接开源。
举个🌰,我们输入一张阿尼亚的图片,通过问答的形式,Qwen-VL-Chat既能概括图片内容,也能定位到图片中的阿尼亚。
首个支持中文开放域定位的通用模型
先来整体看一下Qwen-VL系列模型的特点:
按场景来说,Qwen-VL可以用于知识问答、图像问答、文档问答、细粒度视觉定位等场景。
比如,有一位看不懂中文的外国友人去医院看病,对着导览图一个头两个大,不知道怎么去往对应科室,就可以直接把图和问题丢给Qwen-VL,让它根据图片信息担当翻译。
视觉定位能力方面,即使图片非常复杂人物繁多,Qwen-VL也能精准地根据要求找出绿巨人和蜘蛛侠。
研究人员在四大类多模态任务(Zero-shot Caption/VQA/DocVQA/Grounding)的标准英文测评中测试了Qwen-VL。
另外,研究人员构建了一套基于GPT-4打分机制的测试集TouchStone。
如果你对Qwen-VL感兴趣,现在在魔搭社区和huggingface上都有demo可以直接试玩,链接文末奉上~
Qwen-VL支持研究人员和开发者进行二次开发,也允许商用,不过需要注意的是,商用的话需要先填写问卷申请。
项目链接:
-Chat
论文地址: